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Abstract

This paper vividly studies the properties of commutator in multigroups. It was shown that a
commutator submultigroup is commutative and normal. Further, we show that the commutator
of the homomorphic image equals the image of the commutator and the result also holds for
the inverse image..
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1. Introduction

Modern mathematics has been expanded by violating the basic rules that guide

cantorial set which is the foundation for algebra. Examples of such set are; fuzzy, soft, rough,
intuitionistic, multiset etc. Similarly, the theory of multisets in ([2], [3], [6]) has been studied
by supposing that for a considered set, an element can occur many times which violate the idea
of distinct collection of objects.
The concept of multigroups via multiset was introduced in [12] and some related properties
were established. Since then, several authors have explored the concept of multigroups (see for
details [1], [4], [5], [7]. [8]. [9]. [13], [14], [15] and [16]). Due to the concept of multisets, a
submultigroup can be regular, irregular, complete and incomplete. The notion of commutator
of two submultigroups was introduced in [10] and proved that the commutator of two normal
submultigroups of a multigroup is a submultigroup of the intersection between the two
submultigroups. However, the normality and commutativity of commutator submultigroups
were not studied in the paper. In this paper, among other related results, we show that
commutator submultigroups is commutative and normal.

2. Preliminaries

Definition 2.1 ([3]) Let X be a set. A multiset ¢ over X is a cardinal-valued function,
C;: X — N ={0,1, ...} such that for x € Dom(G), = G(x) is cardinal and G(x) = C;(x) >
0, where C;(x) denotes the number of times an object x occur in multiset G, that is a count
function of G (where C;(x) =0, implies x € Dom(G)). The set X is called the ground or
generic set of the class of all multisets containing objects from X. All set of multisets over X is
denoted as MS(X).
Definition 2.2 ([6]) Let G and H be two multisets over X. Then H is called a submultiset of G
written as H € G if Cy(x) < C;(x),Vx € X. Also, if H < G and H # G, then H is called a
proper submultiset of G denoted as H c G. A multiset is called the parent in relation to its
submultiset.
Definition 2.3 ([2]) If G and H be two multisets over X, then the intersection and union of
H and G, denoted by H n G and H U G, respectively are defined by the rules that for any object
x € X;

I Crng (%) = Cy(x) A Cg (%),

. Cryg(x) = Cy(x)V Cg ().
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where A and V represent minimum and maximum respectively.
Definition 2.4 ([12]) Let X be a group. A multiset G over X is said to be a multigroup over X if
the count function G or C; satisfies the following conditions;
I CG(xy)ZCG(x)ACG(y)' VX,yEX,
i. Co(x™Y)=C(x), Vx € X.
Equivalently, C;(xy™1) = C;(x) ACs(¥),V x,y € X the set of all multigroups over X is
denoted by MG (X).
Definition 2.5 ([12]) Given that X is a group and G € MG (X), then the root of Gis
G, ={x€eX: C;(x) =0}

Definition 2.6 ([10]) Let G € MG (X). A submultiset H of G is called a submultigroup of G
denoted by H E G, if H is a multigroup. A submultigroup H of G is a proper submultigroup
denotedby H = G,if HE G and G # H.
Definition 2.7 ([4]) A submultigroup H of G is said to be a normal submultigroup of G, if and
onlyifh € H, : Cy(xhx™1) > Cy(h),Vx € G,.
Definition 2.8 ([4]) Let {A;}ie;, I = 1,2, ...,n be an arbitrary family of multigroups of X. Then
Coe i) = B €o(0), x e Xand Gy 4 = ¥ G 00, xEX.
The family of multigroups {4;};c; of X is said to have inf/sup assuming chain if either
Aj S A, c - CA,0rA; 24, 2 2 A, respectively.
Proposition 2.1 ([11]) Let H be a submultigroup of G € MG (X), then the following statements
are equivalent;

i. H is a normal submultigroup of G,

ii. Cy(xhx™1) > Cy(h),Vx,y € X,

iii. Ce(xy) =Cs;(yx),Vx,€EX.
Definition 2.9 ([12]) Let G € MG (X). Then G is said to be abelian if

Ce(xy) = Ce(yx),V x,y € X,

Remark Every normal submultigroup is commutative but the converse is not true.
Example 2.1 Let X = {g1 92,93, 94, 95, 96, 97, s} b€ a group under matrix multiplication for

g1 = ((11) 23» 92 = ((1) __101)(») gs = (_010 _fl)' ga = (0_01 _(1)1):
95:(0 —1)' g6=(o 1)' 97=(1 0)' g8=(_1 0)'

A=19:""92"95",94° 95° 96" 97", 95°] € MG(X) and
N =1[g.", 95°, 9,° gs*] < A. Hence,
Cy(nyny) = Cy(nyny), ny,n, € N, but
IJneN,: Cy(nxn1) < Cy(x), x € X.
Definition 2.10 ([12]) Let A,B € MG(X). Then the product of A and B denoted by A o B is
defined by C4o5(x) =V{C; (V) AC;(2) : x = yz,y,z € X}.
Definition 2.11 ([9]) Let X and Y be two groups and let 8 : X — Y be a homomorphism.
Suppose A and B are multigroups of X and Y respectively. Then 6 induces a homomorphism
from A to B which satisfies;
I Coa)(V1Y2) = Coay(V1) A Coay(¥2), YV y1,¥2 €Y,
ii. CB(Q(xlxz)) > CB(H(xl)) A CB(B(xz)),V X1,X%, € X, where
Q) the image of A under 8, denoted by 6(A), is a multiset of Y defined by
[ Vieom1pnCa®), 6710 # @
Con¥) = {0, otherwise foreachy € Y
(i) the inverse image of B under 8, denoted by 8~1(B), is a multiset of X defined by
Co-1(p)(x) = CB(B(x)),Vx € X.
Definition 2.12 ([10]) Let G € MG(X) and A, B £ G. Then the commutator of A and B is the
multiset (4, B) of X defined as follows:
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Caapy(x) = {\O/{CA(a) A Cg(b):x = [a,b]}

, otherwise
Equivalently, C4 5y (x) = V[Ca(a) A Cp(b) : x = aba™'bh™"]
Since the supremum of an empty set is zero, C(4 gy (x) = 0 if x is not a commutator.
Remark 2.2 Let G € MG(X) and A, B £ G. Then the commutator of A and B is a multigroup
generated by C4 ) ().
Theorem 1 ([10]) Let Aand B be normal submultigroups of G € MG(X). Then
[4, Bl AnB.

3. Main Results
Definition 3.1 Let G € MG(X). The commutator of G denoted by y g, is a suomultigroup
C, . (x) = {V {{Cc(@) A C (D), if x = [a, ]}
Yicl 0 otherwise.
Theorem 3.1 LetG € MG(X), then Cy, . (xy) = C,,,,(yx) if Vx,y € (Y161).
Proof. LetG € MG(X) and y[g) E G.LetVz € (yg)), such that
z=xyx'yx,y € (vig)), = xy = yx
Cyre (Ceyx™D)x) = €y (¥
Thus Cy,, (x ™ (xyx)) = €y, ().
Hence CY[G] (xy) = Cy[G] (yx) it shows that y 4 is a commutative submultigroup
Theorem 3.2 Suppose G € MG (X), then y ¢ is a normal submultigroups.
Proof. Giventhat G € MG(X).
If x € {[a,b] : a,b € X}, then Cyig (x) =v{{C;(a) A C;(b)}}
Cy[G] (ab) = CV[G] (ba),Va,b € X.
Now, let x € X and ¢ € (y(5))_ then Cyg (xex™) = Cy g, (x)x™
) 2 Cyg (cai) ACyg xH = Cyig(©)
Thus Crial (xex™1) = Cril (c™H,vxeXx.
Hence y (¢ is a normal submultigroup of G.
Theorem 3.3 The commutator submultigroup of every multigroup G over a group X is
trivial if X is abelian.
Proof. LetG € MG(X).Forany x € (y(g))., we have
Cy[G](x) =V{C;(a)AC;(b): a,b € X}
= Cyq (aba™'b™1)
= Cyq (baa™'b™1) = (. (beb™1)
= Gy (bb™1) = Cyig (e)
= xy = yx € X. Hence Vx,y € X, C;(xy) = C;(yx).
Theorem 3.4 Suppose G € MG(X) and A,B E G. If AT B then [4,C] = [B, C] for every
CEG.For [A,Cl: Cacy(x) = V[Ca(@) A Cc(b) = x = aca™'c™!]
Proof. LetA,B E G € MG(X) such that C4(x) < Cg(x),Vx € X. For any submultigroup C of
G.If x & {[a,b],a, b € X}, then we have C[, ¢1(x) = 0 = Cp c1(x).
Otherwise, let x € {[a, b],a, b € X}, then we have
Ciac)(@) =V{Cs(a) ACc(0)}: x =[a,c]}
=V{Cs(B) A Cc(0)}: x™ = [b,cl} = Cig,c) ()
Hence Ciac)(x) = Cipc)(x) if x € {[a,b]: a, b € X}.
Therefore, [4,C] = [B, C].

1
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Theorem 3.5 Let G € MG(X) such that A and C are submultigroups of G. Suppose B is any
submultigroup of G, then[A o B,C] = [A,C] ° [B,C].
Proof. For G € MG(X) and A, C be submultigroups of G. Let x = {[a, b],a,b € X}. Then
Ceaop,c)(X) =V {{C(AOB)(a) ACc(b)}: x = [a, b]}
=V{V{Ca() ACg(v) : a =uv} ACc(b)} ¢ x = [a,b]}
=V{V {Ca(w) ACc (D)} A {Cp(v) A Cc(D)3}}
=V {Ca(w) A Cc(b)} A {Cp(v) A Cc(D)}}
=V {{C(A,C) [w, b] A Cip ey [V, bl}: x = [uv, b]}
By Theorem 3.1 for any x € X, C4 ¢ (xyx™1) > Ciaey),y € ([A,C))..
=V {Cac)¥) A Cgc) (@)}, x = yz}
= C(A,c)o(B,c) (x).
Now, since [A4, C] is normal submultigroup of G then [A,C]  [B,C] E G.
Hence, C(AOB,C)(x) = C(A'C)O(B,C)(x),Vx € {[a,b],a,b € X}
Theorem 3.6 LetG € MG(X) and 4, B C G, then ([4, B]). = [A,, B,].
Proof Suppose 4, B £ G € MG(X), then there exists a, b € X such that C(4 g)(x) > 0 for any
x = [a,b] andC4(a) A Cg(b) > 0.
Consequently, a € A,,b € B, and x € {[[,m]: [ € A,,m € B,}. Conversely, if
leA,meB,then 0 < Cy(I) A Cg(m) < Cpyp([L,m])
= Clap)(x) >0,V x =[l,m].
Hence, {[[,m]: l € A,,m € B,} = ([A, B])..
Since, ([4,B]). < X and [A,, B.] is the least subgroup of X containing {[lLm]:l e
A, m € B}
Then we have [4,, B.] < ([4, B]).. . On the other hand,
{[lLm]:l€ A,,m € B,} <[A,, B,
If{[lLm]:l € A,,m € B,} < [A,, B,] and there exists x & {[I[,m]: [ € A,,m € B,} then
Ca(a) ANCg(b) < 0,x =[a,b] = {[[,m]:l € A,,m € B,} # ([A, B))..
Conversely, let {[, m]: | € A,,m € B,} = [A,,B.,] then C4p(x) >0,V x = [[,m].
Since ([4,B]). ={[l,m]: L € A,,m € B,} < [A,,B,].
Therefore, ([4, B]). = [A,, B.].
Theorem 3.7 Giventhat G € MG(X) and A, B £ G, then [A, B] = [B, A].
Proof LetA,BC G € MG(X).Ifx & {[a,b],a, b € X}, then
Ciapy(x) = 0= Cpay(x~1). Now, let x € {[a, b],a,b € X }, then
Ciapy(x) =V {Cy(a) A Cp(D)},x € {la,b],a,b € X }}
=V{Ce(B) A C4(@)},x~! = [b,al} = Cipa)(x~ D).
Since C;(y™1) = C;(y), for all y € X. This imply that
Cpay(x™1) = Cg.ay(x),Vx € {[a,b] : a,b € X}
Hence Ca,5)(x) = Cg 4)(x) this shows that [4, B] = [B, A].
Theorem 3.8 Suppose G € MG(X) and A,B = G. Then [A,B] € AU B.
Proof LetA,BC G € MG(X), Let x € X. Suppose x ¢ {[a, b],a,b € X} then
Ceap)(x) =0 =< Cy(a) Vv Cg(b).
Otherwise, C4 5y(x) = 0. For x = [a, b] for some a, b € X then we have
C4(x) = Co(aba™1b™1)
> Cs(a) ACy(ba~1h™1)
Since forany y € X, Cap(yxy™") = Ciap)(x),x € ([4, B]). then
= Cy(a) A Cy(a™?).
Hence C,(x) = C4(a). Similarly, C5(x) = Cz(a).
Consequently, we have C4(a) V Cg(b) < C4(x) V Cg(x) = C4np(x).
Therefore, Cjp1(x) < Cayp(x), Vx € {[a,b],a,b € X}. Hence [4,B] S AU B.
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Theorem 3.9 Suppose G € MG(X) and forany A,B = G. Then [A,B]|E ANB
Proof LetA, B E G € MG(X), show that C45)(x) < C4np(x),x € {[a,b],a,b € X}.
Forany A,B £ G, we have forany v,z € X, Cang(¥z™1) = Cang(y) A Cangp(2) .
Letx € X suchthat x ¢ {[a, b],a,b € X} then C4 5)(x) = 0 < Cy(a) A Cg(b).
If x = [a, b] for some a, b € X then C,(x) = C4,(aba™tb™1)
> Cy(a) ACy(ba=1h™1)
Since forany y € X, Ciap(yxy™) = Ceap(x),x € ([4,B]). = C4(a) A Cy(a).
Hence, C4(x) = C4(a). Similarly, Cz(x) = Cg(a).
Consequently, C4(a) A Cg(b) < C4(x) A Cg(x) = Chnp(x),x € X
Therefore, Cy5)(x) < Cunp(x), Vx € {[a,b],a,b € X}.
Theorem 3.10 Suppose G € MG(X) and A, B £ G then [A,B] E A~ B.
Proof LetA,BEG e MG(X)andx € X. If x € {[a, b],a, b € X} then
Ceap)(x) = 0 < Cyop(x).
Otherwise, C(4 5y(x) = 0. Suppose x = [a, b] for some a, b € X then we have
Cy(x) = Cy(aba™b™1) > C4(a) ACy(ba~tb™1)
By Theorem 3.2 [4, B] is a normal submultigroup, Hence, C,(x) = C4(a™ 1) A C4(a).
Thus C4(x) = C4(a) and also, Cg(x) = Cgz(a) consequently,
Caop(x) =V {Ca(c) A Cp(d) : x = cd}
2V {Ca(x) ACp(x)} : x = [a, b]}
= Cop(x).
Hence, Cyo5(x) = C4.5(x),V x € {[a,b],a,b € X}.
Theorem 3.11 Forany G € MG(X) such that A, B = G. If a and B are the maximum count
in A and B respectively, then the maximum count of [A, B] is the minimum count between «
and S.
Proof Suppose G € MG(X) and t be the maximum count of [A,B]. Given that
x & {[a,b] : a,b € X}, then C,p)(x) =0 <7. Now, suppose x € {[a,b]:a,b € X}, then
Capy(x) =V {Ca(a) A Cp(D)}: x = [a, b]}
{(v{Ci(a): a€ AIA{v{Cs(D)}: bEB}}
V{Cuap(x),Vx € {[a,b]: a €A, bEB}=T.
Hence, C(A,B)(x) <T
Let o be the maximum count of [4, B] such that o < 7. If 0 < 7 then we have o < a and
o < B. Thenthere exists a, b € X such that o < C4(a), o < Cgz(b).
Consequently, o < {C4(a) A Cg(b)} < C45)([a, b)), this contradicts that o # T.
Hence, o0 = 7.
Theorem 3.12 Let X and Y be groups and 8 : X — Y be a homomorphism. If G € MG (X)
such that for any A, B £ G, then [6(A),8(B)] = 6([A, B]).
Proof Giventhaty € Y and 6~ (y) = @, then Co((a,8p () = 0 < Cig(a),0(8(»)-
So, let y = 8(x) for some x € X, then we have
Ceam () =V {Ca(@) A C(B)} + x = [a,b]}
<V {{Coa)(8(a)) A Co(s)0((B))} : v = [6(a), 6(D)]}
=V {{Coa)(©) A Comy ()} : y = [c,d]}
= Coom) @), Yy €{lc,d]:c,d €Y}
Therefore, Co(a,5)) (V) =V {Cap)(x): ¥y = 0(x)} < Claca)08n ) -
Thus, 6([A, B]) < [6(A),8(B)].
Conversely, let y & {[c,d]:c,d €Y}, then Cga)05))(y) =0 =< Cocapy(). So, for
y = [c,d]. If either 671 (c) = @ or 6~(d) = @, then Cy4)(c) A Cy(py(d) = 0.
Otherwise, it result to
Cony(©) A Coay(d) = (V{Ca(672(c)) : c=0(a@)}) A({v{Cs(87 (D) :d =06(b)}

A
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=V {{Cs(@) A Cg(b)}: c=0(a),d = 6(b)}
<V{Cup(la b)) :y==06(a,b])}
<V {Cup(x) : x = [a,b]}
= Co(las) )
Thus, [6(4),8(B)] < 6([A, B]) and hence [6(A),8(B)] = 6([A, B])

Theorem 3.13 Let X and Y be groups and 8 : X — Y be a homomorphism. If G € MG(X)
such that forany 4, B £ G, [671(4),071(B)] < 6~1([4, B)).

Proof Giventhatx € X and x & {[a,b] : a, b € X}, then

C(B_l(A),B_l(B))(x) =0< 69_1((A,B))(x)' Otherwise,

Coreano-rn @ =V {{Ca(6(@) A C5(8(8))} : x = [a,b]}

=v{{Ca(6@) A C3(61))} : B(x) = [6(a), (D)1}
<V {Ca(0), Cg()} : O(x) = [c,d]}
< Cla,51(6(x))
= Co=1(1a,8p (X)-
Therefore, Cig-1(4),6-1(5)] (¥) < Co-1(ja,57) (). Since
Co-1(ap)(cd) = Co-1((ap1)(€) A Corqupp(@), Ve, dEY.
Hence, [671(4),071(B)] € 6~ 1([4, B]).

4. Conclusion

In this paper, we have presented that the commutator submultigroup is commutative and
normal. We also show that the commutator of the homomorphic image equals the image of the
commutator. Therefore the concept of commutator submultigroup can be explore in studying
multigroups that is defined on series as related to classical group
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