Volume 1, Issue 1, 2021
Articles

Soliton Excitation in ferromagnetic Nanotubes with Higher Order Single Ion Anisotropy

Parasuraman E.
Indian Academy Degree College - Autonomous, Hennur Cross, Kalyan Nagar, Bengaluru, Karnataka-560 043
Vinay A.
Indian Academy Degree College - Autonomous, Hennur Cross, Kalyan Nagar, Bengaluru, Karnataka-560 043
Ambrose Rajkumar
Department of Physics, Kristu Jayanti College (Autonomous), K. Narayanapura, Kothanur (PO), Bengaluru 560077

Published 2020-11-03

Keywords

  • No Keyword.

How to Cite

E., P., A., V., & Rajkumar, A. (2020). Soliton Excitation in ferromagnetic Nanotubes with Higher Order Single Ion Anisotropy. Kristu Jayanti Journal of Computational Sciences (KJCS), 1(1), 13–18. https://doi.org/10.59176/kjcs.v1i1.1260

Abstract

Dynamics of soliton in classical discrete Heisenberg ferromagnetic nanotubes (FN) with the effect of higher order single ion anisotropy was studied. The Hirota Bilinearization (HB) method was applied to the discrete nonlinear Schrodinger (DNLS) equation and obtains the soliton solution for FN system. The effects of exchange interaction and single ion anisotropy on soliton evolution along FN system were discussed through graphically.

Downloads

Download data is not yet available.

References

  1. B. Hillebrands and K. Ounadjela, Spin Dynamics in Confined Magnetic Structures-I, (Springer, Berlin, (2002). DOI: https://doi.org/10.1007/3-540-40907-6
  2. S.O. Demokritov, B. Hillebrands and A.N. Slavin, Phys. Rep. 348(6):441-489 (2001). DOI: https://doi.org/10.1016/S0370-1573(00)00116-2
  3. K. Nielsch, F. Mller, A.P. Li and U. Gsele, Adv. Mater. 12(8): 582-586 (2000). DOI: https://doi.org/10.1002/(SICI)1521-4095(200004)12:8<582::AID-ADMA582>3.0.CO;2-3
  4. K. Nielsch, R.B. Wehrspohn, J. Barthel, J. Kirschner, U. Gsele, S.F. Fischer and H. Kronmller, Appl. Phys. Lett. 79(9):1360-1362 (2001). DOI: https://doi.org/10.1063/1.1399006
  5. Z.K. Wang, M.H. Kuok, S.C. Ng, D.J. Lockwood, M.G. Cottam, K.Nielsch, R.B. Wehrspohn and U. Gsele, Phys. Rev. Lett. 89(2): 027201 (2002). DOI: https://doi.org/10.1103/PhysRevLett.89.027201
  6. Z.K. Wang, H.S. Lim, S.C. Ng, M.H. Kuok, L.L. Tay, D.J.Lockwood, M.G. Cottam, K.L. Hobbs, P.R. Larson, J.C. Keay, G.D. Lian and M.B. Johnson, Phys. Rev. Lett. 94: 137208 (2005). DOI: https://doi.org/10.1103/PhysRevLett.94.137208
  7. R. Arias and D.L. Mills, Phys. Rev. B 63: 134439 (2001). DOI: https://doi.org/10.1103/PhysRevB.63.134439
  8. T.M. Nguyen and M.G. Cottam, Surface Science 600(18): 4151-4154 (2006). DOI: https://doi.org/10.1016/j.susc.2006.01.138
  9. R. Arias and D. L. Mills, Phys. Rev. B 67: 094423 (2003). DOI: https://doi.org/10.1103/PhysRevB.67.094423
  10. K. Yu. Guslienko and A. N. Slavin, J. Appl. Phys. 87: 6337 (2000). DOI: https://doi.org/10.1063/1.372698
  11. S. Zhang and D. Liu, Can. J. Phys. 92(3):184-190 (2014). DOI: https://doi.org/10.1139/cjp-2013-0341
  12. S. Zhang and Z. Y. Wang, J. Nonlinear Sci. Appl., 10: 2324-2339 (2017). DOI: https://doi.org/10.22436/jnsa.010.05.05