Volume 2, Issue 1, 2022
Articles

Flow and Heat Transfer in Bingham-Papanastasiou Fluid over a Wedge

Ann Mary Joyson
Assistant Professor, Kristu Jayanti College (Autonomous), Bengaluru, Karnataka
Mini Gopala Krishnan
Assistant Professor, Kristu Jayanti College (Autonomous), Bengaluru, Karnataka
Soya Mathew
Assistant Professor, Kristu Jayanti College (Autonomous), Bengaluru, Karnataka

Published 2022-06-08

Keywords

  • Bingham Model, Bingham-Papanastasiou Model, Static Wedge, Yield-Stress, Non-Newtonian Dissipation, Thermal Radiation.

How to Cite

Joyson, A. M., Krishnan, M. G., & Mathew, S. . (2022). Flow and Heat Transfer in Bingham-Papanastasiou Fluid over a Wedge. Kristu Jayanti Journal of Computational Sciences (KJCS), 2(1), 1–14. https://doi.org/10.59176/kjcs.v2i1.2216

Abstract

This investigation focuses on flow and corresponding heat transfer behavior of viscoplastic Bingham- Papanastasiou fluid over a static radiated wedge. The modeled boundary layer flow governing equations are simplified by using similarity transformations. Numerical results are obtained for the economized equations by employing Runge-Kutta and Newton’s method. The impact of the associated parameters concerned with the fluid properties, friction factor and local Nusselt number are determined. It is found that the thermal radiation parameter improves the heat transfer rate. Bingham number boosts the friction at the wall and reduces the heat transfer rate. Improvement in Bingham number reduces the free surface movement and velocity of the fluid increases.

Downloads

Download data is not yet available.

References

  1. . H.A. Barnes, "The yield stress — a review or panta roi — everything flows", J. Non- Newtonian Fluid Mech.., vol.81, (1999),pp133–178. DOI: https://doi.org/10.1016/S0377-0257(98)00094-9
  2. . R.B. Bird, R.C. Armstrong, O .Hassager, "Dynamics of Polymeric Liquids, Fluid Mechanics", John Wiley & Sons., U.S.A., vol.1,(1987).
  3. . E. C. Bingham, "Fluidity and Plasticity", McGraw-Hill, New York.,(l922) 215-8.
  4. . T.C. Papanastasiou, N. Stresses, P.S. Bodies, "Flows of Materials with Yield", J. Rheol. (N. Y. N. Y)., vol.385, (2013). doi:10.1122/1.549926 DOI: https://doi.org/10.1122/1.549926
  5. . K.R.J. Ellwood, G.C. Georgiou, T.C. Papanastasiou, J.O. Wilkes, "Laminar jets of Bingham-plastic liquids", J. Rheol. (N. Y. N. Y)., vol.787 ,(1990),pp.787–812. doi:10.1122/1.550144 DOI: https://doi.org/10.1122/1.550144
  6. . E. Mitsoulis, A. Matsoukas, "Free surface effects in squeeze flow of Bingham plastics", J. Non-Newtonian Fluid Mech.., vol.129 (2005),pp182–187. DOI: https://doi.org/10.1016/j.jnnfm.2005.06.002
  7. . E. Mitsoulis, "Journal of Non-Newtonian Fluid Mechanics Fountain flow of pseudoplastic and viscoplastic fluids", J. Non-Newtonian Fluid Mech.., vol.165, (2010), pp.45–55. doi: 10.1016/j.jnnfm.2009.09.001 DOI: https://doi.org/10.1016/j.jnnfm.2009.09.001
  8. . F. Belblidia, H. Reza, M. Francis, W. Ken, "Computations with viscoplastic and viscoelastoplastic fluids", RheolActa., vol.50, (2011), pp.343–360. doi:10.1007/s00397-010-0481-6. DOI: https://doi.org/10.1007/s00397-010-0481-6
  9. . D.A.S. Rees, A.P. Bassom, "International Journal of Heat and Mass Transfer Unsteady thermal boundary layer flows of a Bingham fluid in a porous medium", Int. J. Heat Mass Transf., vol.82, (2015),pp. 460–467. doi:10.1016/j.ijheatmasstransfer.2014.10.047 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.047
  10. . S. Nadeem and A. Hussain, "Journal of Magnetism and Magnetic Materials Effects of heat and mass transfer on peristaltic flow of a Bingham fluid in the presence of inclined magnetic field and channel with different wave forms", Ournal Magn. Magn. Mater,vol., 362, (2014) pp.184–192. doi:10.1016/j.jmmm.2014.02.063. DOI: https://doi.org/10.1016/j.jmmm.2014.02.063
  11. . V. M. Falkner and S. W. Skan, "Some approximate solutions of the boundary-layer equations",,Philosophical Magazine., vol.12,(1931),pp. 865-896. DOI: https://doi.org/10.1080/14786443109461870
  12. . D. R. Hartree, "On an equation occurring in Falkner and Skan’s approximate treatment of the equations of the boundary layer", Mathematical Proceedings of the Cambridge Philosophical Society., vol.33,no.2, (1937),pp.223–239. DOI: https://doi.org/10.1017/S0305004100019575
  13. . K. K. Chen, P. A. Libby, Boundary layers with small departure from the Falkner-Skan profile, Journal of Fluid Mechanics., 33(2) (1968)273–282. DOI: https://doi.org/10.1017/S0022112068001291
  14. . T. Hayat, M. Hussain, S. Nadeem, S. Mesloub, "Computers & Fluids Falkner – Skan wedge flow of a power-law fluid with mixed convection and porous medium", Comput. Fluids., ,vol.49, (2011),pp. 22–28. doi:10.1016/j.compfluid.2011.01.020 [ DOI: https://doi.org/10.1016/j.compfluid.2011.01.020
  15. . N.G. Kafoussias and N.D. Nanousis, "Magnetohydrodynamic laminar boundary-layer flow over a wedge with suction or injection",Journal of nanofluid., vol.745, (1997),pp. 733–745. DOI: https://doi.org/10.1139/p97-024
  16. . W.A. Khan and I. Pop, "Boundary Layer Flow Past a Wedge Moving in a Nanofluid", Hindawi Publ. Corp., vol.2013, (2013) pp. 7. DOI: https://doi.org/10.1155/2013/637285
  17. . S. Khan, I. Karim, S. Islam, M. Wahiduzzaman, "MHD boundary layer radiative , heat generating and chemical reacting flow past a wedge moving in a nanofluid", Nano Converg., vol.2., no.1, (2014),pp. 1–13. doi:10.1186/s40580-014-0020-8. DOI: https://doi.org/10.1186/s40580-014-0020-8
  18. . D. Srinivasacharya, U. Mendu, K. Venumadhav, "MHD Boundary Layer Flow of a Nanofluid Past a Wedge", Procedia Eng., vol.127, (2015), pp. 1064–1070. doi:10.1016/j.proeng.2015.11.463. DOI: https://doi.org/10.1016/j.proeng.2015.11.463
  19. . C.S.K Raju and N. Sandeep, "Falkner-Skan flow of a magnetic-Carreau fluid past a wedge in the presence of cross diffusion effects", The European Physical Journal plus.,vol.131, no.8,(2016),267. DOI: https://doi.org/10.1140/epjp/i2016-16267-3
  20. . C. S. K. Raju, Mohammad Mainul Hoque, T. Sivasankar, "Radiative flow of Casson fluid over a moving wedge filled with gyrotactic microorganisms", Advanced Powder Technology.,vol 28, no.2, (2017),pp. 575-583. DOI: https://doi.org/10.1016/j.apt.2016.10.026
  21. . E.M. Sparrow and R.D. Cess, "Radiation Heat Transfer", Brooks Cole Publishing Company, Belmont, California, (1970).
  22. . J.R. Howell, "Radiative transfer in porous media", Handbook of Porous Media, CRC Press, New York, (2000) DOI: https://doi.org/10.1201/9780824741501.pt6
  23. . C. S. K. Raju, N. Sandeep, C. Sulochana, V. Sugunamma, "Effects of aligned magneticfield and radiation on the flow of ferrofluids over a flat plate with non-uniform heat source/sink", Int. J. Sci. Eng.,vol.8,no.2,(2015),pp. 151-158.
  24. . T. Hayat, M. Waqas, S.A Shehzad, A. Alsaedi, "A model of solar radiation and Joule heating in magnetohydrodynamic (MHD) convective flow of thixotropic nanofluid", Journal of Molecular Liquids.,vol.215,(2016),pp. 704-710. DOI: https://doi.org/10.1016/j.molliq.2016.01.005
  25. . Asmat Ara, Najeeb Alam Khan, Hassam Khan, Faqiha Sultan, "Radiation effect on boundary layer flow of an Eyring–Powell fluid over an exponentially shrinking sheet", Ain Shams Engineering Journal., vol.5, no.4, (2014), pp.1337-1342. DOI: https://doi.org/10.1016/j.asej.2014.06.002
  26. . M Sheikholeslami and SA Shehzad, "Thermal radiation of ferrofluid in existence of Lorentz forces considering variable viscosity", International Journal of Heat and Mass Transfer.,vol.109,(2017),pp. 82-92. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.096
  27. . White, Frank M., and Isla Corfield, "Viscous fluid flow", Boston: McGraw-Hill Higher Education, vol.3,(2006).